Geleceğin Gebelikten Korunma Yöntemi; İmmunokontrasepsiyon

CONTRACEPTION METHOD OF FUTURE : IMMUNOCONTRACEPTION

Selman LAÇİN*, Tayfun ÖZÇAKIR**

* Doç.Dr., Celal Bayar Üniversitesi Tip Fakültesi Kadın Hastalıkları ve Doğum AD,
**Yrd.Doç.Dr., Celal Bayar Üniversitesi Tip Fakültesi Kadın Hastalıkları ve Doğum AD, MANİSA

Özet

Günümüzde daha yaygın, etkin ve daha güvenli kontraseptif yöntemlere acilen ihtiyaç olduğu açıktır. Bu yazida alternatif bir yöntem olan immunokontrasepsiyon, yani kişinin immün sisteminin gebelikten korunmaya yönelik olarak aktive edilmesi konusu bugüne ve geleceğin açısından irdelenmiştir.

İmmunokontrasepsiyon konusundaki özellikleri son yıllarda yeryi ve yabancı literatürü gözden geçirilmiştir.

Her iki cins ait gamet hücresleri olan sperm ve oositler potansiyel antijen heceler olarak düşünülmüş ve her iki hücra tipine yönelik pek çok araştırma yapılmıştır. Memeli oositlerinde bulunan özgün bir ekstrasellüler matriks proteini olan zona pellucida’nın üç major glikoproteini (ZP-1, ZP-2, ZP-3) üzerindeki çalışmalar hala sürülmektedir. Aynı şekilde, monoklonal antikor teknolojisinin gelişmesi ile sperm üzerinde bulunan birçok antijen aynı amaç bir hizmet edebilme olasılıkları açısından tanımlanmıştır (FH-1, PH 20, PH 30, SP10 vb. gibi).

Son yıllarda sperm-oosit interaksiyonunda önemli rolü olduğu gösterilen integriner, nitrik oksit, kadheriner gibi birçok adreyon molekülü üzerindeki çalışmalar dikkat çekicidir. Hormonlardan ise FSH ve özellikle anti-hCG antikorları bugüne kadar insan çalışması yapılmış olan tek immunokontraseptif tüm gelişmeler gözden geçirilidirğinde libidoyu ve hormon üretimini bozmayan, etkifin ve yan etkilerden arındırlmış kontraseptif bir aşının önündüğü on yıl içerisinde kullanma girmesi pek muhtemeldir. Genetik bilimindeki ilerlemeler birçok alanda olduğu gibi kontraseptif aşırılarda da ilerlemenin temellerini oluşturmaktadır.

Anahtar Kelimeler: İmmunokontrasepsiyon, sperm antijenleri, oosit antijenleri

T Klin Jinekol Obst 2004, 14:126-130

Summary

It is obvious that more widespread, more effective and more reliable contraceptive methods are needed. This paper is about the present and future aspects of an alternative contraceptive method, immunoncontraception, where a person’s immune system is activated to act in a contraceptive manner.

Local and international literature about immunoncontraception has been detected.

Sperm and oocyte, gamete cells of both sexes, have been considered as potential antigenic targets and many studies have been done about both cells. Studies about three major glycoproteins (ZP-1,ZP-2,ZP-3) of the zona pellucida, an extracellular matrix protein found in mammalian oocytes still continue despite ovarian follicle damage and premature ovulation failure. Similarly many antigens on the sperm cell have been identified (FH-1,PH20, PH30, SP10 etc.) with the development of monoclonal antibody technology. Interesting are studies about integrins, nitric oxide, cadherins and other adhesion molecules that play a role in sperm-oocyte interaction. FSH and especially anti-hCG antibodies are the only hormonal immunoncontraceptives studied on humans. In the light of all studies and developments it is possible that a contraceptive vaccine that does not interfere with libido and hormone production, is effective and has no side effects will be on the market in the coming ten years. Development of genetics is the base of many fields as well as of contraceptive vaccines.

Key Words: Immunocontraception, sperm antigens, oocyte antigens

T Klin J Gynecol Obst 2004, 14:126-130

Günümüzde 6 milyarı aşkın dünya nüfusu ve yakın bir gelecekte, 2010 yılında, 75 milyonu aşkacak olan ülkemiz nüfusu düşündüğünde daha yaygın, etkin ve daha güvenli kontraseptif yöntemlere acilen ihtiyaç olduğu ortadadır. Bu yazida immunokontrasepsiyon, yani kişinin immün sisteminin gebelikten korunmaya yönelik olarak aktive edilmesi konusu bugüne deşin gelinen nokta ve gelecek açısından irdenecektir.

126

Kontraseptif Aşılamanın Temel Noktaları-Avantaj ve Dezavantajlar

Potansiyel Hedefler

I. Oosit Antijenleri

Oosit hedeflendiliğinde, sperm-oosit interaksi- yonunda çok önemli rolü olan ve oosit çevrlelen Zona Pellucida (ZP) geniş olarak incelenmiştir. Memeli oositlerinde bulunan özgün bir ektrasellüler matriks protein olarak zona pelle- cida’nın üç major glikoprotein (ZP-1, ZP-2, ZP-3) ve bunların alt gruplarının içerdığı bilinmektedir (1). Spermın tanınması ve akrozom reaksiyonunun başlatılmasından sorumlu olan ZP-3’den yükse- n transenik farelerin infertil olduklarını göstermiştir (2). Spermdeki akrozom reaksiyonunu indükle- yen ZP-3’in bu özelliğin hem hücresin yüzeyindeki karbonhidrat yan zincirler, hem de reseptör aktivasyonu için gerekli olan kapatılmış bazı etkileyecek peptid içeriği olduğu düşünülmektedir (3). Bu noktaların aşağı çıkarılması ile birlikte ZP-3’in immünokontrasepsiyon için uygun bir hedef olduğu düşünülmüş ve üzerinde birçok çalışma yapılmıştır.

Hayvanlarda ve özellikle primatlarda ZP-3’e karşı oluşturuluran antikorlarla kontrasepsiyon belir- gin bir oranda sağlanabilmistir (4-6). Ancak çalış- maların tamamına yakından yan etki olarak verlerde follikül hasarı ve sonrasında da prematüre over yetmezliği ortaya çıkmıştır. Bu önemiyan etkiden bahsetmeyen çalışmalarda ise takip zamanın yeterince uzun olmadiği düşünülebilir (7-8).
Bir grup araştırmacı follikül yetmezliği sorununun karbonhidrat yan zıcinlerinin sebebi olduğu patojenik epitoplar ile geliştirdiği ve özellikle bu konunun çözülmesi gerektiğini bildirmiştirler (9). Ancak dektoloz ile ZP-3 antijenleri kullanılarak yapılan primat çalışmalarında da benzer sonuçlarla karşılaşılmıştır (10-11). Bu problemin temelde antijenik saflaştırma sorunlarına bağlı olduğu düşünülmekle beraber, rekombinant teknoloji ile hazırlanan proteinler immunogen olarak kullanıldığında bilestituição problemin bu denli basitt olmamışı düştürmektedir.

Yapılan immunohistokimya çalışmalarında ovarian patolojinin otoimmun bir ooorfor olduğu ve overi atake eden lenfositik popülasyonun büyük oranda T lenfositlerden oluştuğunun anlaşılaması gibi birlikte bu popülasyonu uyarmayaçak bir antijenik uyardı ve solunum yapıda sadece B lenfosit epitopları kullanılarak immunizasyon sağlanması fikri üzerinde yoğunlaşmıştır (12). Marmosetler üzerinde yapılan ZP-3 haritalama çalışmaları sonucunda belirlenen ZP-3’un 330-337 arası amino asitlerinin B lenfositleri uyardığı, buna karşın ölçülebilib bir T hücre çevabı oluşturduğu ancak bu kez de kontrasепsiyonun istenilen düzeyde olmadığı son dönemlerde gerçekleştilmiş olarak çalışmaların sonuçları ardından (13).

II. Sperm Antijenleri

Spermle karşı oluşmuş antikor (antispermantikor) kavramı günümüzde zaten bilinmektedir. Çeşitli araştırmacılardan fertile hastalarda %2-10 oranında rastlandığı ve infertilityen sorumlu olabileceği, ayrıca vazekтомi yapılan erkeklerde de kan testis bariyerinin kirılması nedeniyle %70’lere varan oranda anti-sperm antikorların varlığı bildirilmiştir (16-17).

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Karakteristik</th>
<th>Mab aktivitesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA-1</td>
<td>51 kDa otofosforilasyon aktivitesi</td>
<td>Sperm-zona bağlanmasını inhibisyonu</td>
</tr>
<tr>
<td>PH-20</td>
<td>Testis spesifik hyaluronidaz</td>
<td>Kobaylarda aktif immunizasyonla reversible infertilite</td>
</tr>
<tr>
<td>PH-30</td>
<td>Testis spesifik membran proteini, oosit yüzeyindeki integral reseptörlerle etkileşiyor</td>
<td>Mab sperm-oosit çözünmun inhibitörü</td>
</tr>
<tr>
<td>SP-10</td>
<td>İç akrozom membranında lokalize glikoprotein</td>
<td>Mab sperm-oosit çözünmun inhibitörü, baboonlarla fertilitede düşiş</td>
</tr>
<tr>
<td>YPL-12</td>
<td>Testise spesifik, 12 kDa ağırlığına</td>
<td>Sperm-zona bağlanmasını inhibe ediyor</td>
</tr>
</tbody>
</table>

Mab: Monoklonal antikor

Tablo 1. Sperm antijen özelliklerini
ceğini konusu henüz aydınlatılmamıştır. Bir başka sperm yüzeye antijeni olan SP-10 kullanılarak elde edilen antikorlarla otoimmun orşit gelişmediği bildirilmiştir (21). Naz ve arkadalarının (22) 2000 yılında yapılandırıkları çalışmalarında Fertilizasyon Antijen-1 (FA-1) konusunda alınan sonuçların da oldukça önem verici olduğu görülmektedir.

Fertilitinin oluşmasındaki anahtar nokta sperm-oosit füzyonu olduğunu göre bu ilişkinin detaylarla ortaya konması kontrasепsyon amacına yönelik hedefleri de net olarak belirleyecek. Bu bağlamda son yıllarda sperm-oosit interaksiyonunda önemli rolü olduğu gösterilen integrinler, nitrik oksit, kaderinler gibi birçok adezyon moleküllerinde de çalışmalar sürmektedir (23-25).

III. Embriyonel Antijen ve Hormonlar

Son yıllarda ayn konuda ümit vaad eden bir diğer moleküle ise riboflavın taşıyıcı proteinidir. Bu molekülden denatüre ekstraktları ile antikor oluşumu sağlanarak embryo gelişimi çok erken safhada bloke edilebilir ve gebelik sonuçlanmaktadır (26). Bu konuda da henüz insan çalışmalarına geçilememiştir.

Hormonlar açısından bakıldığında erkekler FSH kadınsa ise hCG potansiyel hedefler gibi durmaktadır. Özellikle anti-hCG antikorları bugüne kadar insan çalışmaya yapılmış olan tek immunokontrasепtifir. İlk çalışmalarla (27) LH ile kros-reaksiyon vermiş olan anti-hCG antikorları daha sonra B-hCG’nin karboksi terminaline karşı oluşturulmuş, immunojenet kapanması için döfrer veya tetanoz toksoidi ile birleştirilmiş ve hiç bir yan etki gözlememmiştir (28). Etkinliği olduğu yüksek olduğu belirtilen anti-hCG asının etkisi progesteronlara nötralize edilebilir. Yine etkinliğinin reversible olduğu bildirilen anti-hCG aşının Hindistan’da faz-İV çalışmaları yapılmış ve önumsizdeki yıllarda daha geniş topluluklarda denemesi beklenmektedir (29).

Sonuç olarak libidoyu ve hormon üretimi bozmayan, efektif ve yan etkilerden arındırılmış kontrasепtif bir aşının önumsizdeki on yıl içersinde kullanıma girmesi pek muhtemeldir. Genetik bilişmindeki ilerlemeler birçok alanda olduğu gibi kontrasептив aşılarda da ilerlemenin temel dayanaklarından birini oluşturmaktadır.

KAYNAKLAR

Yazışma Adresi: Dr.Selman LAÇİN
Celal Bayar Üniversitesi Tıp Fakültesi
Kadın Hastalıkları ve Doğum AD,
MANİSA
lacins@egenet.com.tr