E-ISSN: 2619-9467

Contents    Cover    Publication Date: 20 Sep 2023
Year 2023 - Volume 33 - Issue 3

Open Access

Peer Reviewed

ORIGINAL RESEARCH
915 Viewed756 Downloaded

The Predictive Values of Ductus Venosus Pulsatility Index and ''A Wave'' for Chromosomal Abnormalities

Full Text PDF  
JCOG. 2023;33(3):125-32
DOI: 10.5336/jcog.2023-96258
Article Language: EN
Copyright Ⓒ 2020 by Türkiye Klinikleri. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
ABSTRACT
Objective: To establish a reference range for fetal ductus venosus pulsatility index for veins (DV PIV) and investigate the efficacy of the abnormal ductus venosus (DV) Doppler assessment to diagnose the chromosomal abnormalities of the fetus during first-trimester screening. Material and Methods: We retrospectively evaluated a total of 3,243 singleton pregnancies at 11+0 to 13+6 weeks of gestation in a 12-year period and assigned the patients into 2 groups to compare the efficacy of DV PIV in predicting chromosome abnormalities. The first group consisted of pregnancies involving fetuses with chromosomal abnormalities and the second group consisted of uncomplicated singleton fetuses with available DV Doppler measurements. We determined a cut-off value for DV PIV measurements to predict chromosomal abnormalities, and analyzed the relationship between chromosome abnormalities, and abnormal DV Doppler measurements. Results: A total of 644 fetuses (104 fetuses with an abnormal karyotype (pregnancies involving fetuses with chromosomal abnormalities) and 540 fetuses phenotypically normal or euploid in neonates after birth (pregnancies with normal fetuses) met the study criteria. The 5th and 95th percentiles of DV PIV were 0.78 and 1.21 in pregnancies with normal fetuses. We calculated with 63.6% sensitivity and 60.3% specificity, (95% confidence interval 0.72-0.83) for DV PIV to diagnose chromosomal abnormalities. Abnormal DV blood flow was related to all trisomies. The lowest DV PIV was observed in cases with trisomy 21, while the highest DV PIV values were found in cases with trisomy 18 and 13 in the abnormal karyotype group. Conclusion: Routinely monitoring DIV PIV as a first-trimester screening tool may be beneficial to predict fetal chromosomal abnormalities.
REFERENCES:
  1. Kiserud T, Eik-Nes SH, Blaas HG, Hellevik LR. Ultrasonographic velocimetry of the fetal ductus venosus. Lancet. 1991;338(8780):1412-4. [Crossref]  [PubMed] 
  2. Baschat AA, Gembruch U, Harman CR. The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens. Ultrasound Obstet Gynecol. 2001;18(6):571-7. [Crossref]  [PubMed] 
  3. Baschat AA. Fetal growth restriction-from observation to intervention. J Perinat Med. 2010;38(3):239-46. [Crossref]  [PubMed] 
  4. Papatheodorou SI, Evangelou E, Makrydimas G, Ioannidis JP. First-trimester ductus venosus screening for cardiac defects: a meta-analysis. BJOG. 2011;118(12):1438-45. [Crossref]  [PubMed] 
  5. Wagner P, Eberle K, Sonek J, Berg C, Gembruch U, Hoopmann M, et al. First-trimester ductus venosus velocity ratio as a marker of major cardiac defects. Ultrasound Obstet Gynecol. 2019;53(5):663-8. [Crossref]  [PubMed] 
  6. Kagan KO, Wright D, Nicolaides KH. First-trimester contingent screening for trisomies 21, 18 and 13 by fetal nuchal translucency and ductus venosus flow and maternal blood cell-free DNA testing. Ultrasound Obstet Gynecol. 2015;45(1):42-7. [Crossref]  [PubMed] 
  7. Ghaffari SR, Tahmasebpour AR, Jamal A, Hantoushzadeh S, Eslamian L, Marsoosi V, et al. First-trimester screening for chromosomal abnormalities by integrated application of nuchal translucency, nasal bone, tricuspid regurgitation and ductus venosus flow combined with maternal serum free β-hCG and PAPP-A: a 5-year prospective study. Ultrasound Obstet Gynecol. 2012;39(5):528-34. [Crossref]  [PubMed] 
  8. Maiz N, Valencia C, Kagan KO, Wright D, Nicolaides KH. Ductus venosus Doppler in screening for trisomies 21, 18 and 13 and Turner syndrome at 11-13 weeks of gestation. Ultrasound Obstet Gynecol. 2009;33(5):512-7. [Crossref]  [PubMed] 
  9. Borrell A, Grande M, Bennasar M, Borobio V, Jimenez JM, Stergiotou I, et al. First-trimester detection of major cardiac defects with the use of ductus venosus blood flow. Ultrasound Obstet Gynecol. 2013;42(1):51-7. [Crossref]  [PubMed] 
  10. Oh C, Harman C, Baschat AA. Abnormal first-trimester ductus venosus blood flow: a risk factor for adverse outcome in fetuses with normal nuchal translucency. Ultrasound Obstet Gynecol. 2007;30(2):192-6. [Crossref]  [PubMed] 
  11. Minnella GP, Crupano FM, Syngelaki A, Zidere V, Akolekar R, Nicolaides KH. Diagnosis of major heart defects by routine first-trimester ultrasound examination: association with increased nuchal translucency, tricuspid regurgitation and abnormal flow in ductus venosus. Ultrasound Obstet Gynecol. 2020;55(5):637-44. [Crossref]  [PubMed] 
  12. Czuba B, Nycz-Reska M, Cnota W, Jagielska A, Wloch A, Borowski D, et al. Quantitative and qualitative Ductus Venosus blood flow evaluation in the screening for Trisomy 18 and 13 - suitability study. Ginekol Pol. 2020;91(3):144-8. [Crossref]  [PubMed] 
  13. Maiz N, Wright D, Ferreira AF, Syngelaki A, Nicolaides KH. A mixture model of ductus venosus pulsatility index in screening for aneuploidies at 11-13 weeks' gestation. Fetal Diagn Ther. 2012;31(4):221-9. [Crossref]  [PubMed] 
  14. Bhide A, Acharya G, Bilardo CM, Brezinka C, Cafici D, Hernandez-Andrade E, et al. ISUOG practice guidelines: use of Doppler ultrasonography in obstetrics. Ultrasound Obstet Gynecol. 2013;41(2):233-9. [PubMed] 
  15. Yılmaz Baran Ş, Kalaycı H, Doğan Durdağ G, Yetkinel S, Arslan A, Bulgan Kılıçdağ E. Does abnormal ductus venosus pulsatility index at the first-trimester effect on adverse pregnancy outcomes? J Gynecol Obstet Hum Reprod. 2020;49(9):101851. [Crossref]  [PubMed] 
  16. Wright D, Syngelaki A, Bradbury I, Akolekar R, Nicolaides KH. First-trimester screening for trisomies 21, 18 and 13 by ultrasound and biochemical testing. Fetal Diagn Ther. 2014;35(2):118-26. [Crossref]  [PubMed] 
  17. Kalayci H, Yilmaz Baran Ş, Doğan Durdağ G, Yetkinel S, Alemdaroğlu S, Özdoğan S, et al. Reference values of the ductus venosus pulsatility index for pregnant women between 11 and 13+6 weeks of gestation. J Matern Fetal Neonatal Med. 2020;33(7):1134-9. [Crossref]  [PubMed] 
  18. Peixoto AB, Caldas TM, Martins WP, Ferreira PC, Nardozza LM, Costa Fda S, et al. Reference range for the pulsatility index ductus venosus Doppler measurement between 11 and 13 + 6 weeks of gestation in a Brazilian population. J Matern Fetal Neonatal Med. 2016;29(17):2738-41. [Crossref]  [PubMed] 
  19. Pruksanusak N, Kor-anantakul O, Suntharasaj T, Suwanrath C, Hanprasertpong T, Pranpanus S, et al. A reference for ductus venosus blood flow at 11-13+6 weeks of gestation. Gynecol Obstet Invest. 2014;78(1):22-5. [Crossref]  [PubMed] 
  20. Antolín E, Comas C, Torrents M, Mu-oz A, Figueras F, Echevarría M, et al. The role of ductus venosus blood flow assessment in screening for chromosomal abnormalities at 10-16 weeks of gestation. Ultrasound Obstet Gynecol. 2001;17(4):295-300. [Crossref]  [PubMed] 
  21. Wagner P, Sonek J, Eberle K, Abele H, Hoopmann M, Prodan N, et al. First trimester screening for major cardiac defects based on the ductus venosus flow in fetuses with trisomy 21. Prenat Diagn. 2018 Apr 16. [Crossref]  [PubMed] 
  22. Burger NB, Matias A, Kok E, de Groot CJ, Christoffels VM, Bekker MN, et al. Absence of an anatomical origin for altered ductus venosus flow velocity waveforms in first-trimester human fetuses with increased nuchal translucency. Prenat Diagn. 2016;36(6):537-44. [Crossref]  [PubMed] 
  23. Karadzov-Orlic N, Egic A, Filimonovic D, Damnjanovic-Pazin B, Milovanovic Z, Lukic R, et al. Screening performances of abnormal first-trimester ductus venosus blood flow and increased nuchal translucency thickness in detection of major heart defects. Prenat Diagn. 2015;35(13):1308-15. [Crossref]  [PubMed] 
  24. Matias A, Montenegro N. Ductus venosus blood flow in chromosomally abnormal fetuses at 11 to 14 weeks of gestation. Semin Perinatol. 2001;25(1):32-7. [Crossref]  [PubMed] 
  25. Abele H, Wagner P, Sonek J, Hoopmann M, Brucker S, Artunc-Ulkumen B, et al. First trimester ultrasound screening for Down syndrome based on maternal age, fetal nuchal translucency and different combinations of the additional markers nasal bone, tricuspid and ductus venosus flow. Prenat Diagn. 2015;35(12):1182-6. [Crossref]  [PubMed] 
  26. Wagner P, Sonek J, Klein J, Hoopmann M, Abele H, Kagan KO. First-trimester ultrasound screening for trisomy 21 based on maternal age, fetal nuchal translucency, and different methods of ductus venosus assessment. Prenat Diagn. 2017;37(7):680-5. [Crossref]  [PubMed] 
  27. Borrell A, Martinez JM, Serés A, Borobio V, Cararach V, Fortuny A. Ductus venosus assessment at the time of nuchal translucency measurement in the detection of fetal aneuploidy. Prenat Diagn. 2003;23(11):921-6. [Crossref]  [PubMed] 
  28. Timmerman E, Oude Rengerink K, Pajkrt E, Opmeer BC, van der Post JA, Bilardo CM. Ductus venosus pulsatility index measurement reduces the false-positive rate in first-trimester screening. Ultrasound Obstet Gynecol. 2010;36(6):661-7. [Crossref]  [PubMed] 
  29. Czuba B, Zarotyński D, Dubiel M, Borowski D, Węgrzyn P, Cnota W, et al. Screening for trisomy 21 based on maternal age, nuchal translucency measurement, first trimester biochemistry and quantitative and qualitative assessment of the flow in the DV - the assessment of efficacy. Ginekol Pol. 2017;88(9):481-5. [Crossref]  [PubMed] 
  30. Bilardo CM, Müller MA, Zikulnig L, Schipper M, Hecher K. Ductus venosus studies in fetuses at high risk for chromosomal or heart abnormalities: relationship with nuchal translucency measurement and fetal outcome. Ultrasound Obstet Gynecol. 2001;17(4):288-94. [Crossref]  [PubMed] 
  31. Martínez JM, Comas M, Borrell A, Bennasar M, Gómez O, Puerto B, et al. Abnormal first-trimester ductus venosus blood flow: a marker of cardiac defects in fetuses with normal karyotype and nuchal translucency. Ultrasound Obstet Gynecol. 2010;35(3):267-72. [Crossref]  [PubMed] 
  32. Wiechec M, Nocun A, Matyszkiewicz A, Wiercinska E, Latała E. First trimester severe ductus venosus flow abnormalities in isolation or combination with other markers of aneuploidy and fetal anomalies. J Perinat Med. 2016;44(2):201-9. [Crossref]  [PubMed] 
  33. Garcia-Delgado R, Garcia-Rodriguez R, Romero Requejo A, Armas Roca M, Obreros Zegarra L, Medina Castellano M, et al. Echographic features and perinatal outcomes in fetuses with congenital absence of ductus venosus. Acta Obstet Gynecol Scand. 2017;96(10):1205-13. [Crossref]  [PubMed] 
  34. Staboulidou I, Pereira S, Cruz Jde J, Syngelaki A, Nicolaides KH. Prevalence and outcome of absence of ductus venosus at 11(+0) to 13(+6) weeks. Fetal Diagn Ther. 2011;30(1):35-40. [Crossref]  [PubMed] 
  35. Timmerman E, Clur SA, Pajkrt E, Bilardo CM. First-trimester measurement of the ductus venosus pulsatility index and the prediction of congenital heart defects. Ultrasound Obstet Gynecol. 2010;36(6):668-75. [Crossref]  [PubMed]